Fitting and using the Megatech Solar unvented mains pressure water heater
Please read and understand these instructions before starting work.

The information contained in these instructions details how to connect the Megatech Solar water heater to a solar primary circuit. Other controls will be necessary to provide control over the primary circuit, refer to the instructions supplied with the solar controls and ancillary equipment for details of how to integrate them with the Megatech Solar unit.

Please leave this leaflet with the user following installation.
Introduction

Congratulations on your purchase of a Heatrae Sadia Megatech Solar unvented water heater. The Megatech is manufactured in the UK from top quality materials and meets all the latest relevant safety and constructional standards. The high grade Duplex stainless steel cylinder offers exceptional strength and corrosion resistance which is backed by a 25 year guarantee. Its performance and insulation levels exceed the latest requirements of Building Regulation Part L.

The Megatech unvented water heater can be fed directly from the cold water mains supply to the property without the need for separate feed cisterns or vent pipes. It is supplied complete with all the necessary inlet and safety controls, electric immersion heater(s) and, for units fitted with an auxiliary heating coil, a cylinder thermostat, thermal cut-out, 2-port motorised valve and wiring centre.

Generally its pressure and flow rate performance will far exceed that from a comparable vented system, thermal store, multipoint instantaneous gas heater or combination boiler.

Diagram 1 - Schematic installation details

NOTE: FOR BALANCED PRESSURE COLD WATER SUPPLIES TEE OFF BETWEEN THE COLD WATER COMBINATION VALVE AND THE EXPANSION VALVE CORE UNIT.
General Requirements

IMPORTANT: PLEASE READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE INSTALLING THE MEGATECH WATER HEATER. INCORRECT INSTALLATION MAY INVALIDATE GUARANTEE.

THIS APPLIANCE IS NOT INTENDED FOR USE BY PERSONS (INCLUDING CHILDREN) WITH REDUCED PHYSICAL, SENSORY OR MENTAL CAPABILITIES, OR LACK OF KNOWLEDGE AND EXPERIENCE, UNLESS THEY HAVE BEEN GIVEN SUPERVISION OR INSTRUCTION CONCERNING THE USE OF THE APPLIANCE BY A PERSON RESPONSIBLE FOR THEIR SAFETY.

THE MEGATECH SOLAR MUST BE INSTALLED (SECTIONS 2 - 6), COMMISSIONED (SECTION 7) AND MAINTAINED (SECTIONS 9 - 10) BY A COMPETENT INSTALLER IN ACCORDANCE WITH BUILDING REGULATION G3 (ENGLAND AND WALES), TECHNICAL STANDARD P3 (SCOTLAND) OR BUILDING REGULATION P5 (NORTHERN IRELAND) AND THE WATER FITTING REGULATIONS (ENGLAND AND WALES) OR WATER BYELAWS (SCOTLAND). FOLLOWING INSTALLATION AND COMMISSIONING, THE OPERATION OF THE HEATER SHOULD BE EXPLAINED TO THE USER (SECTION 8) AND THESE INSTRUCTIONS LEFT WITH THEM FOR FUTURE REFERENCE.

2.1 COMPONENT CHECK LIST

Before commencing installation check that all the components for your Megatech Solar unit are contained in the package. The following components are supplied as standard with your Megatech unit:

- Factory fitted immersion heater(s) and thermal controls
- Cold Water Combination Valve (comprises Isolating Valve, Pressure Reducing Valve, Strainer, and Check Valve).
- Expansion Core Unit (comprises Check Valve and Expansion Valve)
- Expansion Vessel (including wall mounting bracket)
- Factory fitted Temperature/Pressure Relief Valve (set at 90°C/10bar)
- T&P Relief Valve Insulation Set
- Drain Valve
- Wiring Centre (CL units only)
- Tundish (included in the Cold Water Combination Valve pack)
- Factory fitted Auxiliary heating coil Thermostat and Thermal Cut-out (CL units only)
- 2-port Motorised Valve (CL units only)
- Lifting handle

2.2 SITING THE MEGATECH SOLAR (see Diagram 1)

The Megatech Solar unit must be vertically floor mounted. It can be placed anywhere convenient provided the discharge pipe(s) from its safety valves can be correctly installed. Areas that are subject to freezing must be avoided. Ensure that the floor is of sufficient strength to support the “full” weight of the unit (refer to Tables 4 and 5 on page 33 for unit weights). Pipe runs should be kept as short as possible for maximum economy. Access to associated controls, immersion heaters and controls housings should be possible for servicing and maintenance of the system (Note: controls housings hinge open to the left hand side).

Please do not install valves or pipework (except discharge pipe) within 50mm (2") of the T&P relief valve to allow your insulation set to be fitted. The insulation set is important to ensure heat and energy conservation. See section 3.9 for more information.

To aid installation the Megatech Solar is provided with lifting points located in the base moulding and a lifting handle. The lifting handle should be fully threaded onto the outlet boss before use. Once the Megatech Solar is suitably positioned the lifting handle should be removed to allow connection of the outlet pipework. The weights of the units are noted on the tables on page 33.
2.3 WATER SUPPLY

Bear in mind that the mains water supply to the property will be supplying both the hot and cold water requirements simultaneously. **It is recommended that the maximum water demand be assessed and the water supply checked to ensure this demand can be met.**

**NOTE:** A high mains water pressure will not always guarantee high flow rates.

Wherever possible the main supply pipe should be in 22mm. We suggest that the minimum supply requirements should be 0.15 MPa (1.5 bar) working pressure and 20 litres per minute flowrate. At these values outlet flowrates may be poor if several outlets are used simultaneously, the higher the available pressure and flowrate the better the system performance will be.

The Megatech Solar has an operating pressure of 0.3 MPa (3 bar) which is controlled by the Cold Water Combination Valve. The Cold Water Combination Valve can be connected to a maximum mains supply pressure of 1.6 MPa (16 bar). The water supply must be of wholesome water quality (Fluid Category 1 as defined by the Water Supply Regulations 1999).

2.4 OUTLET/TERMINAL FITTINGS (TAPS, ETC.)

The Megatech Solar can be used in conjunction with most types of terminal fittings. It is advantageous in many mixer showers to have balanced hot and cold water supplies. In these instances the balanced cold water supply should be teed off the supply to the Megatech immediately after the Cold Water Combination Valve (see Diagrams 4 and 5). Branches to cold drinking outlets should be taken before the valve.

Outlets situated higher than the Megatech Solar unit will give outlet pressures lower than that at the heater, a 10m height difference will result in a 0.1 MPa (1 bar) pressure reduction at the outlet fitting.

**NOTE:** Accessories should have a rated operating pressure of at least 0.8 MPa (8 bar).

2.5 LIMITATIONS

The Megatech Solar unvented water heater should not be used in any of the following instances:

- Solid fuel boilers or any other boiler in which the energy input is not under effective thermostatic control unless additional and appropriate safety measures are installed.
- Gravity circulation primaries.
- Steam heating plant unless additional and appropriate safety devices are installed.
- Ascending spray type bidets or any other Class 5 back syphonage risk requiring that a Type AA, AB, AD or AG air gap be employed.
- Water supplies that have inadequate pressure or where the supply may be intermittent.
- Situations where it is not possible to safely pipe away any discharge from the safety valves.
- Areas where the water consistently contains a high proportion of solids, eg. suspended matter that could block the strainer, unless adequate filtration can be ensured.
- The installation must be carried out in accordance with the relevant requirements of:
  - The appropriate Building Regulations: either The Building Regulations (England), The Building Regulations (Scotland) or Building Regulations (Northern Ireland).
  - The Water Fittings Regulations (England and Wales) or Water Byelaws (Scotland).
Installation - General

3.1 PIPE FITTINGS
All pipe connections to the Megatech Solar are made via 22mm compression fittings directly to the unit (nuts and olives supplied). The fittings are also threaded 3/4" BSP male parallel should threaded pipe connections be required.

3.2 COLD WATER SUPPLY
A 22mm cold water supply is recommended, however, if a 15mm (1/2") supply exists which provides sufficient flow (see section 2.3) this may be used. More flow noise may be experienced from small bore pipes due to the increased water velocity through them.

The Cold Water Combination Valve supplied with the Megatech Solar incorporates a full flow isolating valve which will enable the Megatech to be isolated from the mains supply for maintenance or servicing. To close the valve the black handle should be turned so that it lies at 90° to the direction of flow. To open turn the handle so that it lies parallel to the direction of flow.

3.3 COLD WATER COMBINATION VALVE (see Diagram 2)
The Cold Water Combination Valve can be connected anywhere on the cold water mains supply prior to the Megatech Solar unit. There is no requirement to site it close to the unit, it can be located at a point where the mains supply enters the premises if this is more convenient. The Expansion Valve connection must not be used for any other purpose.

The Cold Water Combination Valve can be installed as a complete one-piece unit. The valve incorporates a factory set, non-adjustable Pressure Reducer/Strainer, an Expansion Valve connection and a single Check Valve. The valve can be fitted in any orientation to suit the installation, however, ensure that the Valve is installed with the direction of flow arrows (stamped on the side of the brass body) pointing towards the Megatech heater. Should you wish to site the Expansion Valve on the Cold Water Combination Valve this can be done by unscrewing the connection nut beneath the Expansion Valve on the Expansion Core Unit and removing the Expansion Valve. The connecting nut and blanking plug should then be unscrewed from the Cold Water Combination Valve and replaced with the Expansion Valve. NOTE: IF THE EXPANSION VALVE IS FITTED TO THE COLD WATER COMBINATION VALVE THE EXPANSION CORE UNIT SHOULD NOT BE USED AS THE CHECK VALVE WITHIN IT WILL PREVENT FREE PASSAGE OF EXPANDED WATER TO THE EXPANSION VALVE. Ensure the discharge from the Expansion Valve can be correctly installed.

If a balanced pressure cold water supply is required to a thermostatic shower mixer valve this may be teed off the supply to the Megatech immediately after the Cold Water Combination Valve (see Diagram 5). Branches to drinking water outlets should be taken before the valve to avoid the possibility of warm expanded water being drawn from the tap.

3.4 EXPANSION CORE UNIT (see Diagram 3)
Should a balanced pressure cold water supply be required for other cold water outlets the Expansion Core Unit supplied should be used. The Core Unit should be fitted into the pipework...
between the Cold Water Combination Valve and the Megatech Solar (Note direction of flow arrows). The cold water balanced draw off connection should be taken from between the Cold Water Combination Valve and the Expansion Core Unit (see Diagram 4). The Expansion Valve connection on the Cold Water Combination Valve should remain blanked off using the blanking nut and seal provided. Ensure the discharge from the Expansion Valve can be correctly installed.

Diagram 2 - Cold Water Combination Valve

Diagram 3 - Expansion Core Unit
Diagram 4 - Schematic installation diagram using Cold Water Combination Valve in conjunction with Expansion Core Unit

- **Cold Water Combination Valve** incorporating Pressure Reducing Valve, Isolating Valve, Strainer and Check Valve
- **NB** Expansion Valve tapping must be blanked off
- **MCWS to Kitchen** (unbalanced cold mains supply)
- **Incoming Cold Water Main**
- **Expansion Core Unit** (combined Expansion Relief Valve/Check Valve)
- Balanced cold water draw off
- Temperature/Pressure Relief Valve
- Balanced HWS and MCWS to bathrooms, showers, cloakrooms, etc.
- **Isolating/Regulating Valves as required**
- **Discharge pipe to atmosphere** (See Section 3.9 “Discharge Pipework”)

**KEY**
- MCWS Mains cold water supply
- HWS Hot water service
- SC Stop Cock
- DOC Drain Off Cock
Diagram 5 - Schematic installation diagram using Cold Water Combination Valve

Balanced cold water draw off to shower mixer valves (Note: tapping must be min. 3m from Megaflo inlet connection)

Temperature/Pressure Relief Valve

HWS supply

Balanced HWS and MCWS to each shower.

Isolating/Regulating Valves as required

MCWS Mains cold water supply
HWS Hot water service
SC Stop Cock
DOC Drain Off Cock

Incoming Cold Water Main

Cold Water Combination Valve incorporating Pressure Reducing Valve, Isolating Valve, Strainer and Check Valve and Expansion Relief Valve

MCWS to Kitchen and drinking water outlets (unbalanced cold mains supply)

EXPANSION VESSEL

Tundish

Discharge pipe to atmosphere (See Section 3.8 "Discharge Pipework")

Megatech Solar

KEY

Incoming Cold Water Main

DOC

SC
3.5 DRAIN TAP

A draining tap is supplied and should be installed in the cold water supply to the Megatech Solar unit between the Cold Water Combination Valve (or Expansion Core Unit if being used) and the heater at as low a level as possible (see Diagram 1). It is recommended that the outlet point of the drain pipe work be at least 1 metre below the level of the heater (this can be achieved by attaching a hose pipe to the drain tap outlet spigot). The drain tap supplied provides very good water flow control and blanking cap for extra security.

3.6 OUTLET PIPEWORK

Ideally the pipework from the Megatech Solar to the outlet fittings should be in 22mm pipe with short runs of 15mm pipe to showers and basin taps. Small bore pipe can also be used to suit some taps, but runs should be of minimum length. Pipe sizes may vary due to system design.

3.7 EXPANSION VESSEL

The Expansion Vessel accommodates expansion that results from heating the water inside the unit. The unit is pre-charged at 0.35 MPa (3.5 bar). The Expansion Vessel must be connected between the Cold Water Combination Valve and the Megatech Solar (see Diagram 1). The location of the Expansion Vessel should allow access to recharge the pressure as and when necessary, this can be done using a normal car foot pump. It is recommended that the Expansion Vessel is adequately supported. An Expansion Vessel wall mounting bracket is supplied for this purpose.

**NOTE:** DO NOT USE THE POTABLE WATER EXPANSION VESSEL SUPPLIED WITH THE MEGATECH SOLAR FOR ANY OTHER PURPOSE. IT MUST NOT BE USED IN PLACE OF THE SOLAR PRIMARY SYSTEM EXPANSION VESSEL.

3.8 SECONDARY CIRCULATION

If a secondary circulation system is required it should be connected to the Megatech Solar as shown in Diagram 6 via the connection provided. The secondary return pipe should be in 15mm pipe and incorporate a check valve to prevent backflow. A suitable WRAS approved bronze circulation pump will be required. On large systems, due to the increase in system water content, it may be necessary to fit additional expansion volume to the system by fitting an external expansion vessel to the secondary circuit. This should be done if the capacity of the secondary circuit exceeds 10 litres.

Pipe capacities (copper)

- 15mm o/d = 0.13 litres per metre run (10 litres = 77m)
- 22mm o/d = 0.38 litres per metre run (10 litres = 26m)
- 28mm o/d = 0.55 litres per metre run (10 litres = 18m)

Secondary circulation is NOT recommended for direct electric units being used on Off Peak electricity tariffs. The secondary circulation return must not be connected to the inlet as this would lead to indirect heating of the dedicated solar buffer volume.
3.9 T&P RELIEF VALVE INSULATION

A set of insulating components is supplied with the Megaflo water heater and should be installed to gain maximum heat and energy saving benefits. See Diagram 7 for installation instructions.

3.10 WARNINGS

i) Under no circumstances should the factory fitted Temperature/Pressure Relief Valve be removed other than by Authorised Heatrae Sadia personnel. To do so will invalidate any guarantee or claim.

ii) The Cold Water Combination Valve must be fitted to the mains water supply to the Megatech unit.

iii) No control or safety valves should be tampered with.

iv) Water may drip from the discharge pipe of the pressure relief device (Expansion Valve) and this pipe must be left open to atmosphere. The discharge pipe should not be blocked or used for any other purpose.
3.11 DISCHARGE PIPEWORK

It is a requirement of Building Regulations that any discharge from an unvented system is conveyed to where it is visible, but will not cause danger to persons in or about the building. The tundish and discharge pipes should be fitted in accordance with the requirements and guidance notes of Building Regulations. Building Regulation G3 Requirements and Guidance section 3.9 are reproduced in the following sections.

Information Sheet No. 33 available from the British Board of Agrément gives further advice on discharge pipe installation. For discharge pipe arrangements not covered by G3 Guidance or BBA Info Sheet No.33 advice should be sought from your local Building Control Officer.

Any discharge pipe connected to the pressure relief devices (Expansion Valve and Temperature/Pressure Relief Valve) must be installed in a continuously downward direction and in a frost free environment.

G3 REQUIREMENT

“...there shall be precautions...to ensure that the hot water discharged from safety devices is safely conveyed to where it is visible but will not cause danger to persons in or about the building.”

G3 GUIDANCE SECTION 3.9

The discharge pipe (D1) from the vessel up to and including the tundish is generally supplied by the manufacturer of the hot water storage system. Where otherwise, the installation should include the discharge pipe(s) (D1) from the safety device(s). In either case the tundish should be vertical, located in the same space as the unvented hot water storage system and be fitted as close as possible and within 500mm of the safety device e.g. the temperature relief valve.

The discharge pipe (D2) from the tundish should terminate in a safe place where there is no risk to persons in the vicinity of the discharge, preferably be of metal and:

a. be at least one pipe size larger than the nominal outlet size of the safety device unless its total equivalent hydraulic resistance exceeds that of a straight pipe 9m long i.e. discharge pipes between 9m and 18m equivalent resistance length should be at least two sizes larger than the nominal outlet size of the safety device, between 18 and 27m at least 3 sizes larger, and so on. Bends must be taken into account in calculating the flow resistance. Refer to Diagram 7, Table 1 and the worked example.

An alternative approach for sizing discharge pipes would be to follow BS 6700:1987 Specification for design, installation, testing and maintenance of services supplying water for domestic use within buildings and their curtilages, Appendix E, section E2 and table 21.

b. have a vertical section of pipe at least 300mm long below the tundish before any elbows or bends in the pipework.

c. be installed with a continuous fall.

d. have discharges visible at both the tundish and the final point of discharge, but where this is not possible or is practically difficult there should be clear visibility at one or other of these locations.
Examples of acceptable discharge arrangements are:
  i. ideally below a fixed grating and above the water seal in a trapped gully.
  ii. downward discharges at low level; i.e. up to 100mm above external surfaces such as car parks, hard standings, grassed areas etc. are acceptable providing that where children may play or otherwise come into contact with discharges a wire cage or similar guard is positioned to prevent contact, whilst maintaining visibility.
  iii. discharges at high level; e.g. into a metal hopper and metal down pipe with the end of the discharge pipe clearly visible (tundish visible or not) or onto a roof capable of withstanding high temperature discharges of water and 3m from any plastics guttering system that would collect such discharges (tundish visible).
  iv. where a single pipe serves a number of discharges, such as in blocks of flats, the number served should be limited to not more than 6 systems so that any installation discharging can be traced reasonably easily. The single common discharge pipe should be at least one pipe size larger than the largest individual discharge pipe (D2) to be connected. If unvented hot water storage systems are installed where discharges from safety devices may not be apparent i.e. in dwellings occupied by blind, infirm or disabled people, consideration should be given to the installation of an electronically operated device to warn when discharge takes place.

**Note:** The discharge will consist of scalding water and steam. Asphalt, roofing felt and non-metallic rainwater goods may be damaged by such discharges.

**Worked example of discharge pipe sizing**
The example below is for a G1/2 temperature relief valve with a discharge pipe (D2) having 4 No. elbows and length of 7m from the tundish to the point of discharge.
From Table 1:
Maximum resistance allowed for a straight length of 22mm copper discharge pipe (D2) from a G1/2 temperature relief valve is 9.0m.
Subtract the resistance for 4 No. 22mm elbows at 0.8m each = 3.2m
Therefore the permitted length equates to: 5.8m
5.8m is less than the actual length of 7m therefore calculate the next largest size.
Maximum resistance allowed for a straight length of 28mm pipe (D2) from a G1/2 temperature relief valve equates to 18m.
Subtract the resistance of 4 No. 28mm elbows at 1.0m each = 4.0m
Therefore the maximum permitted length equates to: 14m
As the actual length is 7m, a 28mm (D2) copper pipe will be satisfactory.
### Table 1 - Sizing of copper discharge pipe (D2) for common T&P relief valve sizes

<table>
<thead>
<tr>
<th>Valve outlet size</th>
<th>Minimum size of discharge pipe D1</th>
<th>Minimum size of discharge pipe D2 from tundish</th>
<th>Maximum resistance allowed, expressed as a length of straight pipe (i.e. no elbows or bends)</th>
<th>Resistance created by each elbow or bend</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/2</td>
<td>15mm</td>
<td>22mm, 28mm, 35mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>0.8m, 1.0m, 1.4m</td>
</tr>
<tr>
<td>G3/4</td>
<td>22mm</td>
<td>28mm, 35mm, 42mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>1.0m, 1.4m, 1.7m</td>
</tr>
<tr>
<td>G1</td>
<td>28mm</td>
<td>35mm, 42mm, 54mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>1.4m, 1.7m, 2.3m</td>
</tr>
</tbody>
</table>

### Diagram 8 - Schematic discharge pipe arrangement

- Safety device (e.g., Temperature relief valve)
- Metal discharge pipe (D1) from Temperature relief valve to tundish
- Discharge below fixed grating (Building Regulation G3 section 3.9d gives alternative points of discharge)
- Fixed grating
- Trapped gully
Installation - Solar Primary

4.1 CONNECTION TO SOLAR PRIMARY CIRCUIT

The lower (solar) coil of the Megatech Solar must be connected to a fully pumped solar primary circuit. The connections (see diagram 17) are suitable for 22mm copper pipe direct to the compression fittings provided. The connections are also threaded 3/4” BSP male parallel should BSP connections be required.

The solar primary circuit must have its own dedicated circulating pump, thermal and safety controls which must be installed as per the manufacturer’s instructions.

4.2 CONTROL OF SOLAR PRIMARY CIRCUIT

Temperature control of the Megatech Solar must be carried out using a suitable proprietary solar differential temperature controller. The cylinder temperature sensing probe (usually supplied with the solar differential temperature controller) should be inserted into the pocket provided on the Megatech Solar (see diagram 9) and its cable secured using the cable clamp supplied.

The solar controller and solar primary circulation pump must be wired via the over-temperature cut-out mounted in the lower solar controls housing (see diagram 9). This will ensure that the heat input to the solar coil is interrupted in the event of the cylinder over-heating. There must also be suitable Check (non-return) valves installed in the solar primary flow and return to prevent the possibility of any thermo-syphoning if the solar circulation is stopped.

Connection to the solar differential temperature controller should be in accordance with the manufacturer’s instructions. The controller should be set to give a recommended cylinder temperature of approx. 60°C. The maximum setting should not exceed 70°C otherwise nuisance operation of the thermal cut-outs may occur.

Diagram 9 - Solar Coil Control Connections

Note: wires removed from diagram for clarity
Installation - Direct units

5.1 IMMERSION HEATER(S)

The Megatech Solar Direct is supplied with two factory fitted immersion heaters. Each immersion heater is rated 3kW at 240V.

To remove the immersion heater:

Ensure the cylinder is drained of water first. Open the cover to the upper immersion heater. Unplug the thermostat from the element by gently pulling the thermostat outwards. Unscrew the brass backnut using the key spanner provided. Remove the immersion heater assembly and sealing gasket from the boss.

Replacement:

Insert the immersion heater and sealing gasket into the required boss. Ensure that the sealing gasket is not displaced when inserting. It may be helpful to support the immersion heater using a round bladed screwdriver inserted into one of the thermostat pockets. Hand tighten the brass backnut. Secure the immersion heater in position by tightening with the key spanner provided. Insert the blanking plate into the remaining boss ensuring the sealing gasket is not displaced when inserting. Hand tighten the brass backnut. Secure in position by tightening with the key spanner provided.

If an additional immersion heater is required order Part No. 95 970 510.

5.2 WIRING (see Diagram 10)

All electrical wiring should be carried out by a competent electrician and be in accordance with the latest I.E.E. Wiring Regulations. Each circuit must be protected by a suitable fuse and double pole isolating switch with a contact separation of at least 3mm in both poles.

The immersion heater(s) should be wired in accordance with Diagram 10. The immersion heaters MUST be earthed. The supply cable should be 1.5mm² 3 core HOFR sheathed and must be routed through the cable gland provided with the outer sheath of the cable firmly secured by tightening the screw on the cable gland. Replace the immersion heater cover(s) before operating ensuring that the threaded edge clip is in position to provide a suitable thread for the cover screw.

DO NOT OPERATE THE IMMERSION HEATER(S) UNTIL THE MEGATECH SOLAR HAS BEEN FILLED WITH WATER..

5.3 OPERATION

It is recommended that the immersion heater thermostats are set to between position 4 and 5 (60° - 65°C), however they can be set between 1 and 5 (10° and 70°C). The thermostat incorporates a thermal cut-out that will switch off the immersion heater in the event of a thermostat failure. The thermal cut-out reset button position is indicated on Diagram 10. DO NOT bypass the thermal cut-out in any circumstances.
5.4 SAFETY

DO NOT BYPASS THE THERMAL CUT-OUT(S) IN ANY CIRCUMSTANCES.
DISCONNECT FROM THE MAINS SUPPLY BEFORE REMOVING ANY COVERS.
NEVER ATTEMPT TO REPLACE AN IMMERSION HEATER OTHER THAN WITH THE
RECOMMENDED HEATRAE SADIA MEGATECH SOLAR SPARE PART.

Diagram 10 -
Schematic wiring diagram - Direct immersion heaters

Diagram 11 - Immersion heater details

NOTE: FOR CLARITY THE EARTH LINK WIRE BETWEEN CUSTOMER EARTHING TERMINAL AND EARTHING TAG NOT SHOWN. THIS MUST NOT BE REMOVED!
Installation - Auxiliary coil
(Indirect units)

6.1 BOILER SELECTION
The Megatech Solar Indirect (CL) models are supplied with an auxiliary heating coil suitable for use with most gas or oil fired boilers compatible with unvented systems i.e. fitted with a temperature control thermostat and thermal cut-out.
If in doubt consult the boiler manufacturer.
Solid fuel boilers or any other boiler in which the energy input is not under effective thermostatic control unless additional and appropriate safety measures are installed should NOT be used.
The boiler used can either be a sealed system or open vented type, maximum primary circuit pressure 0.3 MPa (3 bar).
The primary flow from the boiler MUST be pumped. Gravity circulation will not work due to the special design of the primary heat exchanger. It is recommended that an air bleed point or automatic air vent is incorporated in the primary return pipework close to the Megatech Solar unit.
The boiler flow temperature should usually be set to 82°C (maximum flow temperature to primary heat exchanger 90°C).
The boiler cannot be vented through the Megatech Solar unit.

6.2 INDIRECT THERMAL CUT-OUT AND 2-PORT MOTORISED VALVE
To comply with Building Regulations and to prevent the Megatech Solar from overheating the 2-port motorised valve supplied MUST be fitted to the primary flow to the auxiliary heating coil (see Diagram 12).

6.3 WIRING
All electrical wiring should be carried out by a competent electrician and be in accordance with the latest I.E.E. Wiring Regulations.
The Megatech Solar Indirect Thermostat and Thermal Cut-out are factory pre-wired. The 2-port motorised valve supplied MUST be wired in series with the Indirect controls such that the power supply to the valve is interrupted should either the Thermostat or Thermal Cut-out operate. The Wiring Diagrams 14 or 15 detail the wiring required between these controls and the motorised valve. Wiring to external controls is made via the terminal block fitted. The cable should be routed through the aperture in the terminal cover and secured using the cable clamp provided. The Indirect Thermal Cut-out MUST NOT be bypassed.

6.4 HEATING SYSTEM CONTROLS
The controls provided with the Megatech Solar will ensure the safe operation of the Megatech Solar within a central heating system. Other controls will be necessary to control the space heating requirements and times that the system is required to function. Depending on the boiler selected, heating circuit design and controls used it may be beneficial to incorporate a system bypass in the heating system pipework.
The Megatech Solar is compatible with most heating controls, examples of electrical circuits are given in Diagrams 14 and 15. However, other systems may be suitable, refer to the controls manufacturer’s instructions, supplied with the controls selected, for alternative system wiring schemes.

5.5 IMMERSION HEATER

The Megatech Solar indirect units (CL models) are supplied with an immersion heater which can be used as an alternative heat source should the boiler supply need to be isolated from the Megatech unit. The immersion heater is located within the controls housing. Refer to Sections 4.2 and 4.3 and Diagram 10 for details of wiring and operation of the immersion heater.

Diagram 12 - Primary connections to indirect (CL) units
Diagram 13 - Indirect controls housing details

- INDIRECT THERMAL CUT-OUT
- THERMOSTAT ADJUSTMENT
- INDIRECT THERMAL CUT-OUT RESET BUTTON
- INDIRECT THERMOSTAT
- CABLE CLAMPS
- TERMINAL BLOCK

NOTE:
The housing cover and element assembly have been removed from this view for clarity.
Diagram 14 - 2 x 2 port valve system

NOTES:
1. A DOUBLE POLE ISOLATING SWITCH MUST BE INSTALLED IN THE MAINS SUPPLY.
2. ALL EARTH CONNECTIONS MUST BE LINKED BACK TO THE MAINS EARTH SUPPLY.
3. USE COPPER LINKS SUPPLIED TO MAKE CONNECTIONS BETWEEN TERMINALS.
4. DO NOT MOUNT WIRING CENTRE ON CYLINDER.
5. THE ABOVE DIAGRAM IS FOR GUIDANCE ONLY; HEATRAE SADIA ACCEPT NO LIABILITY FOR ANY LOSS OR DAMAGE ARISING FROM ANY ERRORS OR OMISSIONS THAT MAY BE INADVERTENTLY CONTAINED WITHIN THIS DIAGRAM. THE VARIOUS EQUIPMENT MANUFACTURERS SHOULD BE CONSULTED TO CONFIRM THE CORRECT OPERATION OF THEIR PRODUCTS WITHIN THE SYSTEM.

KEY
Bl BLUE
Br BROWN
G GREY
O ORANGE
GY GREEN/YELLOW
DHW DOMESTIC HOT WATER
HTG HEATING

Diagram 213x570 to 239x586
Diagram 15 - 2 port valve in conjunction with a 3 port mid-position valve system

**NOTES:**

1. A DOUBLE POLE ISOLATING SWITCH MUST BE INSTALLED IN THE MAINS SUPPLY.
2. ALL EARTH CONNECTIONS MUST BE LINKED BACK TO THE MAINS EARTH SUPPLY.
3. ASSUMES BASIC BOILER WITH EXTERNAL PUMP.
4. USE COPPER LINKS SUPPLIED TO MAKE CONNECTIONS BETWEEN TERMINALS.
5. DO NOT MOUNT WIRING CENTRE ON CYLINDER
6. THE ABOVE DIAGRAM IS FOR GUIDANCE ONLY, HEATRAE SADIA ACCEPT NO LIABILITY FOR ANY LOSS OR DAMAGE ARISING FROM ANY ERRORS OR OMISSIONS THAT MAY BE INADVERTENTLY CONTAINED WITHIN THIS DIAGRAM. THE VARIOUS EQUIPMENT MANUFACTURERS SHOULD BE CONSULTED TO CONFIRM THE CORRECT OPERATION OF THEIR PRODUCTS WITHIN THE SYSTEM.
Commissioning

7.1 FILLING AND FLUSHING THE MEGATECH SOLAR

Ensure that all fittings and immersion heaters are correctly fitted and tightened. An immersion heater key spanner is provided to aid tightening of the immersion heater backnut(s).

i) Open a hot tap furthest from the Megatech.

ii) Open the isolating valve on the Cold Water Combination Valve by turning the black handle so that it lies parallel to the direction of flow. Open the mains stop cock to fill the unit. When water issues from the tap, allow to run for a few minutes to thoroughly flush through any residue, dirt or swarf, then close tap.

iii) Open successive hot taps to purge any air from the system.

iv) Check all connections for leaks and rectify as necessary.

v) The Strainer housed within the Cold Water Combination Valve should be cleaned to remove any debris that may have been flushed through the main supply pipe. Refer to Section 8.3 for instructions on how to do this.

7.2 CHECK THE OPERATION OF THE SAFETY VALVES

i) Slowly manually open, for a few seconds, the Temperature and Pressure Relief Valve situated on the Megatech unit (see Diagram 17). Check water discharged runs freely away through the tundish and discharge pipework. Close valve, ensure water flow stops and valve reseats correctly.

ii) Repeat for the Expansion Valve situated on the Cold Water Combination Valve or Expansion Core Unit (see Diagrams 2 and 3).

7.3 SOLAR PRIMARY CIRCUIT

Fill the solar primary circuit following the instructions provided with the solar hydraulic controls. The cylinder temperature control sensor probe supplied with the solar differential temperature controller must be inserted into the pocket in the lower controls housing and its cable securely clamped.

Heating by the solar primary circuit is controlled by the solar differential temperature controller, refer to the manufacturers installation instructions for details of how to set up and commission the solar primary circuit. The solar controller should be programmed to give a maximum storage temperature in the Megatech of 70°C although 60°C is recommended to minimise scaling.

7.4 IMMERSION HEATER(S)

Switch on the electrical supply to the immersion heater(s) and allow the unit to heat up. Check that the thermostat operates correctly. A storage temperature of approx. 60°C is recommended (between graduations 4 and 5 on the thermostat). If necessary the temperature can be adjusted by inserting a flat bladed screwdriver in the adjustment knob on top of the immersion heater thermostat and rotating (see Diagram 11). The adjustment range 1 to 5 represents a temperature range of between 10° and 70°C.

Check that no water is discharged from either the Expansion Valve or Temperature and Pressure Relief Valve during the heating cycle.
7.5 AUXILIARY HEATING COIL (INDIRECT) UNITS

Fill the auxiliary heating (indirect) primary circuit following the boiler manufacturer’s commissioning instructions. To ensure the auxiliary primary heating coil in the Megatech Solar is filled the 2-port motorised valve (supplied) should be manually opened by moving the lever on the motor housing to the MAN OPEN setting. When the auxiliary heating primary circuit is full return the lever to the AUTO position. Vent any trapped air by opening the air bleed.

Switch on the boiler, ensure the programmer is set to Domestic Hot Water. Allow the Megatech unit to heat up and check that the indirect thermostat and 2-Port motorised valve operate correctly. A storage temperature of approx. 60°C is recommended (approx. graduation 4 on the indirect thermostat). If necessary the temperature can be adjusted by inserting a flat bladed screwdriver in the adjustment knob (located on the front of the thermostat mounting bracket see Diagram 13) and rotating. The minimum thermostat setting is 10°C. The adjustment range 1 to 5 represents a temperature range of 30°C to 70°C.

Check that no water is discharged from either the Expansion Valve or Temperature and Pressure Relief Valve during the heating cycle.

7.6 BENCHMARK™ LOG BOOK

On completion of the installation and commissioning procedures detailed in this manual the Benchmark™ “Installation, Commissioning and Service Record Log Book” should be completed and signed off by the competent installer or commissioning engineer in the relevant sections.

The various system features, location of system controls, user instructions and what to do in the event of a system failure should be explained to the customer. The customer should then countersign the Benchmark™ log book to accept completion.

The log book should be left with the customer along with these instructions. The log book includes sections that should be filled in when any subsequent service or maintenance operation is carried out on the Megatech Solar.
User Instructions

8.1 WARNINGS

IF WATER ISSUES FROM THE TEMPERATURE/PRESSURE RELIEF VALVE ON THE MEGATECH UNIT REFER TO SECTION 8.4 FIRST. IF THIS DOES NOT RECTIFY THE FAULT SWITCH OFF ELECTRICAL SUPPLY TO THE IMMERSION HEATER(S) (DIRECT UNITS), SHUT DOWN THE BOILER ON THE AUXILIARY HEATING (INDIRECT) CIRCUIT OR SHUT DOWN THE SOLAR PRIMARY CIRCUIT. DO NOT TURN OFF THE WATER SUPPLY. CONTACT A COMPETENT INSTALLER FOR UNVENTED WATER HEATERS TO CHECK THE SYSTEM.

DO NOT TAMPER WITH ANY OF THE SAFETY VALVES FITTED TO THE MEGATECH SYSTEM, IF A FAULT IS SUSPECTED CONTACT A COMPETENT INSTALLER.

8.2 TEMPERATURE CONTROL

SOLAR PRIMARY CIRCUIT

Temperature control when heating by the solar primary circuit will be controlled by the external solar differential temperature controller. The controller should be set to give a water storage temperature of approx. 60°C, however it can be set to other temperatures. This will usually have been done during installation. A maximum of 70°C is recommended to avoid nuisance operation of the thermal cut-outs fitted to the unit. Adjustment is made at the solar differential temperature controller, refer to the manufacturer’s instructions for details of how to make any adjustments.

Changes to the operating temperature differential set points can affect the efficiency of the operation of the solar heating circuit, it is recommended that any changes made are carried out by a competent solar water heating installation engineer.

IMMERSION HEATERS

A combined thermostat and thermal cut-out is provided for each immersion heater. The thermostat is factory set to give a water storage temperature of approx. 60°C, however it can be set to control between 10°C and 70°C. This will usually have been done during installation. Adjustments can only be made by opening the terminal cover(s), DO NOT remove the cover(s) without first switching off the electrical supply. The temperature adjustment is made by inserting a flat bladed screwdriver in the slot in the disc on top of the thermostat and rotating (see Diagram 11).

If in any doubt consult a competent electrician.

AUXILIARY HEATING COIL

Indirect units (CL models) are fitted with an Indirect Thermostat which controls a 2-port motorised valve and hence the temperature of the water in the Megatech unit when heated using the auxiliary heating coil. The thermostat is factory set to give a water storage temperature of approx. 60°C, however it can be set to control between 10°C and 70°C, this will usually have been done during installation. Adjustments can only be made by opening the
terminal cover. **DO NOT remove the cover without first switching off the electrical supply.** Temperature adjustment is made by inserting a flat bladed screwdriver in the adjustment knob located on the front of the thermostat mounting bracket (see Diagram 13) and rotating. At the minimum position the temperature will be approx. 10°C. The adjustment range 1 to 5 represents a temperature range of 30°C to 70°C.

If in any doubt consult a competent electrician.

**DO NOT bypass the thermal cut-out in any circumstances.**

### 8.3 FLOW PERFORMANCE

When initially opening hot outlets a small surge in flow may be noticed as pressures stabilise. This is quite normal with unvented systems and does not indicate a fault.

In some areas a cloudiness may be noticed in the hot water. This is due to aeration of the water, is quite normal and will quickly clear.

### 8.4 OPERATIONAL FAULTS

Operational faults and their possible causes are detailed in Section 9.3. It is recommended that faults should be checked by a competent installer.

The air volume within the expansion vessel will periodically require re-charging to ensure expanded water is accommodated within the hot water system. A discharge of water INTERMITTENTLY from the Expansion Valve will indicate the air volume in the Expansion Vessel has reduced to a point where it can no longer accommodate the water expansion.

If after following the above actions water still discharges from the Expansion Relief Valve further advice should be sought from a competent installer or the Heatrae Sadia service department.
维护

9.1 维护要求

确保Megatech太阳能设备的持续最优性能，应定期维护。这在硬水地区或供水含悬浮物时尤为重要。维护应由有资质的人士进行，所用更换部件应为授权的Heatrae Sadia Megatech备用部件。建议每12个月进行一次维护，包括9.2和9.3节中详细说明的检查。

在硬水地区，应考虑定期除垢。Megatech单元需放水，9.4和9.5节详细说明了如何放水和移除浸没式加热元件。

9.2 检查安全阀操作

慢慢打开温度和压力泄压阀，旋转其盖子几秒。检查水是否排出，且能自由流经集水盘和排放管道。检查释放后阀门是否复位。

注：排出的水可能非常热。

重复此程序进行扩张泄压阀（位于冷水组合阀或扩张阀核心单元）。

9.3 清洁滤网

滤网位于冷水组合阀的压力降低阀内（见图2）。要检查和清洁滤网：

i) 关闭冷水组合阀上的隔离阀，使黑色手柄与流体方向垂直。

ii) 打开系统中的最低热水龙头，以缓解系统压力。

iii) 使用扳手卸下压力降低衬套并移除模制外壳。滤网将与衬套一起移除（见图16）。

iv) 清洗滤网上的悬浮物。

v) 更换滤网并用衬套拧入模制外壳。

vi) 关闭热水龙头，通过旋转手柄使把手平行于流体方向打开隔离阀。检查是否有泄漏。

9.4 放水

切断浸没式加热器的电力供应，并关闭间接单元的锅炉。切断主水供应至Megatech单元。将软管连接到排放口，软管长度足以将水排放至适合的排放点，位于单元水平以下至少一米推荐。打开邻近Megatech的热水龙头以缓解系统压力。打开排放口。如果水不能从Megatech排出，可手动打开温度/压力泄压阀。

9.4 放水

切断浸没式加热器的电力供应，并关闭间接单元的锅炉。切断主水供应至Megatech单元。将软管连接到排放口，软管长度足以将水排放至适合的排放点，位于单元水平以下至少一米推荐。打开邻近Megatech的热水龙头以缓解系统压力。打开排放口。如果水不能从Megatech排出，可手动打开温度/压力泄压阀。
9.5 DESCALING IMMERSION HEATER(S)

Isolate the electrical supply before removing covers and drain unit of water. Open the cover(s) to the immersion heater housing(s) and disconnect wiring from immersion heater(s). Remove the thermostat carefully pulling outwards from the immersion heater. Unscrew immersion heater backnut(s) and remove immersion heater from the unit. A key spanner is supplied with the Megatech unit for easy removal/tightening of the immersion heater(s). Over time the immersion heater gasket may become stuck to the mating surface. To break the seal insert a round bladed screwdriver into one of the pockets on the immersion heater and gently lever up and down.

Carefully remove any scale from the surface of the element(s). DO NOT use a sharp implement as damage to the element surface could be caused. Ensure sealing surfaces are clean and seals are undamaged, if in doubt fit a new gasket.

Replace immersion heater(s) ensuring the lower (right angled) element hangs vertically downwards towards the base of the unit. It may be helpful to support the immersion heater using a round bladed screwdriver inserted into one of the thermostat pockets whilst the backnut is tightened. Replace the thermostat(s) by carefully plugging the two male spade terminations on the underside of the thermostat head into the corresponding terminations on the element.

Rewire the immersion heater(s) in accordance with Diagram 10. Close and secure terminal cover(s).

9.6 EXPANSION VESSEL CHARGE PRESSURE

Remove the dust cap from the top of the expansion vessel. Check the charge pressure using a tyre pressure gauge. The charge pressure (with the system de-pressurised) should be 0.3 MPa (3 bar). If it is lower than the required setting it should be re-charged using a tyre pump (Schrader valve type). DO NOT OVER CHARGE. Re-check the pressure and when correct replace the dust cap.

9.7 REFILLING SYSTEM

DO NOT SWITCH ON THE IMMERSION HEATER(S) OR BOILER UNTIL THE SYSTEM HAS BEEN COMPLETELY REFILLED.

Close the drain tap. With hot tap open, turn on mains water supply. When water flows from the hot tap allow to flow for a short while to purge air and to flush through any disturbed particles. Close hot tap and then open successive hot taps in system to purge any air. The electrical supply can now be switched on.

9.8 BENCHMARK™ LOG BOOK

On completion of any maintenance or service of the Megatech Solar the Benchmark™ “Installation, Commissioning and Service Record Log Book” should be filled in to record the actions taken and the date the work was undertaken.
10.1 IMPORTANT
i) Servicing should only be carried by authorised Heatrae Sadia Service Engineers or Agents or by competent installers in the installation and maintenance of unvented water heating systems.
ii) Any spare parts used MUST be authorised Heatrae Sadia parts.
iii) Disconnect the electrical supply before removing any electrical equipment covers.
iv) NEVER bypass any thermal controls or operate system without the necessary safety valves.
v) Water contained in the Megatech Solar unit may be very hot, especially following a thermal control failure. Caution must be taken when drawing water from the unit.

10.2 SPARE PARTS
A full range of spare parts are available for the Megatech Solar range. Refer to the Technical Data label on the unit to identify the model installed and ensure the correct part is ordered.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion heater (lower)</td>
<td>95 606 963</td>
</tr>
<tr>
<td>Immersion heater (upper)</td>
<td>95 606 964</td>
</tr>
<tr>
<td>Immersion heater gasket</td>
<td>95 611 822</td>
</tr>
<tr>
<td>Immersion heater backnut</td>
<td>95 607 869</td>
</tr>
<tr>
<td>Immersion heater key</td>
<td>95 607 861</td>
</tr>
<tr>
<td>Solar temperature probe pocket plate</td>
<td>95 607 064</td>
</tr>
<tr>
<td>Tundish</td>
<td>95 605 838</td>
</tr>
<tr>
<td>Expansion relief valve cartridge - 8bar</td>
<td>95 605 870</td>
</tr>
<tr>
<td>Expansion Valve complete</td>
<td>95 607 028</td>
</tr>
<tr>
<td>Cold water combination valve body incl. isolating valve</td>
<td>95 605 029</td>
</tr>
<tr>
<td>Check valve housing</td>
<td>95 605 028</td>
</tr>
<tr>
<td>Pressure reducing valve cartridge - 3bar</td>
<td>95 605 026</td>
</tr>
<tr>
<td>Pressure reducing valve housing</td>
<td>95 605 027</td>
</tr>
<tr>
<td>Cold Water Combination Valve complete</td>
<td>95 605 021</td>
</tr>
<tr>
<td>Temperature/Pressure Relief Valve</td>
<td>95 605 810</td>
</tr>
<tr>
<td>Expansion Core Unit</td>
<td>95 605 041</td>
</tr>
<tr>
<td>Expansion Vessel (25 litre)</td>
<td>95 607 612</td>
</tr>
<tr>
<td>Swept Tee</td>
<td>95 605 812</td>
</tr>
<tr>
<td>Set of compression nuts and olives</td>
<td>95 607 838</td>
</tr>
<tr>
<td>Combined thermostat/thermal cut-out (immersion heater)</td>
<td>95 612 026</td>
</tr>
<tr>
<td>Terminal cover (Direct units)</td>
<td>95 607 836</td>
</tr>
<tr>
<td>2 Port motorised valve (Indirect (CL) units only)</td>
<td>95 605 819</td>
</tr>
<tr>
<td>Indirect thermostat</td>
<td>95 612 697</td>
</tr>
<tr>
<td>Indirect thermal cut-out</td>
<td>95 612 698</td>
</tr>
<tr>
<td>Terminal cover (Indirect (CL) units only)</td>
<td>95 607 837</td>
</tr>
<tr>
<td>4 way terminal block (Indirect (CL) units only)</td>
<td>95 607 902</td>
</tr>
<tr>
<td>Accessory kit indirect</td>
<td>95 607 093</td>
</tr>
<tr>
<td>Accessory kit direct</td>
<td>95 607 095</td>
</tr>
<tr>
<td>Insulation set T&amp;P relief valve</td>
<td>95 607 089</td>
</tr>
<tr>
<td>Drain valve 1/4 turn</td>
<td>95 605 051</td>
</tr>
<tr>
<td>Wiring centre</td>
<td>95 607 008</td>
</tr>
</tbody>
</table>
10.3 FAULT FINDING

The Fault Finding chart overleaf (Table 2) will enable operational faults to be identified and their possible causes rectified. Any work carried out on the Megatech Solar unvented water heater and its associated controls MUST be carried out by a competent installer for unvented water heating systems. In case of doubt contact the Heatrae Sadia Service Department (see Section 13).
## Table 2 - Fault Finding Chart

<table>
<thead>
<tr>
<th>FAULT</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| No hot water flow | 1. Mains supply off  
2. Strainer blocked  
3. Cold Water Combination Valve incorrectly fitted | 1. Check and open stop cock  
2. Turn off water supply. Remove strainer and clean (see Section 9.3)  
3. Check and refit as required |
| Water from hot taps is cold | 1. DIRECT immersion heater not switched on  
2. DIRECT immersion heater thermal cut-out has operated  
3. INDIRECT programmer set to Central Heating only  
4. INDIRECT boiler not working  
5. INDIRECT thermal cut-out has operated  
6. INDIRECT motorised valve not connected correctly  
7. SOLAR insufficient solar gain with no auxiliary heating switched on | 1. Check and switch on  
2. Check. Reset by pushing button. (See Diagram 11)  
3. Check. Set to a Domestic Hot Water programme  
4. Check boiler operation. If fault is suspected consult boiler manufacturer's instructions  
5. Check. Reset by pushing button on cut-out. Check operation of indirect thermostat (see Diagram 13)  
6. Check wiring and/or plumbing connections to motorised valve (see Diagrams 14 & 15)  
7. Check auxiliary heat source is switched on and is controlled to provide heat gain if no solar output is available. |
| Water discharges from Expansion Relief Valve | 1. INTERMITTENTLY Expansion volume has reduced within Expansion Vessel  
2. CONTINUALLY  
   a. Cold Water Combination Valve Pressure Reducer not working correctly  
   b. Expansion Valve seat damaged. | 1. See Section 9.6 for re-charging procedure  
a. Check pressure from Cold Water Combination Valve. If greater than 3 bar replace Pressure Reducer cartridge  
b. Remove Expansion Valve cartridge. Check condition of seat. If necessary fit new Expansion Valve cartridge. |
| Water discharges from T&P Relief Valve | 1. Thermal control failure  
NOTE water will be very hot | 1. Switch off power to immersion heater(s), shut down boiler and solar primary circuit. DO NOT turn off water supply. When discharge stops check all thermal controls, replace if faulty. |
Diagram 17 - Dimensions

Direct units
1. SOLAR PRIMARY RETURN
2. SOLAR PRIMARY FLOW
3. T&P VALVE
4. BOOST IMMERSION HEATER
5. AUXILLARY IMMERSION HEATER
6. INLET
7. SOLAR CONTROL HOUSING

Indirect units
1. SOLAR PRIMARY RETURN
2. SOLAR PRIMARY FLOW
3. AUXILLARY BOILER RETURN
4. AUXILLARY BOILER FLOW
5. T&P VALVE
6. SECONDARY RETURN
7. AUXILLARY CONTROL HOUSING
8. INLET
9. SOLAR CONTROL HOUSING
### Table 3 - Dimensions

<table>
<thead>
<tr>
<th>SIZE</th>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>Direct</td>
<td>1372</td>
<td>950</td>
<td>-</td>
<td>740</td>
<td>-</td>
<td>1019</td>
</tr>
<tr>
<td>190</td>
<td>Indirect</td>
<td>1372</td>
<td>-</td>
<td>732</td>
<td>803</td>
<td>923</td>
<td>1019</td>
</tr>
<tr>
<td>210</td>
<td>Direct</td>
<td>1473</td>
<td>1000</td>
<td>-</td>
<td>759</td>
<td>-</td>
<td>1184</td>
</tr>
<tr>
<td>210</td>
<td>Indirect</td>
<td>1473</td>
<td>-</td>
<td>892</td>
<td>808</td>
<td>1095</td>
<td>1184</td>
</tr>
<tr>
<td>250</td>
<td>Direct</td>
<td>1731</td>
<td>1072</td>
<td>-</td>
<td>773</td>
<td>-</td>
<td>1391</td>
</tr>
<tr>
<td>250</td>
<td>Indirect</td>
<td>1731</td>
<td>-</td>
<td>1160</td>
<td>883</td>
<td>1258</td>
<td>1391</td>
</tr>
<tr>
<td>300</td>
<td>Direct</td>
<td>2038</td>
<td>1409</td>
<td>-</td>
<td>870</td>
<td>-</td>
<td>1715</td>
</tr>
<tr>
<td>300</td>
<td>Indirect</td>
<td>2038</td>
<td>-</td>
<td>1438</td>
<td>1023</td>
<td>1573</td>
<td>1715</td>
</tr>
</tbody>
</table>

### Table 4 - Direct units - Technical specifications

<table>
<thead>
<tr>
<th>SIZE</th>
<th>UNITWEIGHT (kg) EMPTY</th>
<th>FULL</th>
<th>AUXILIARY VOLUME (L)</th>
<th>HEAT UP TIMES (mins) LOWER (3kW)</th>
<th>UPPER+ LOWER (6kW)</th>
<th>UPPER BOOST (3kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>40.5 230.5 124</td>
<td></td>
<td></td>
<td>122 61 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>42.5 252.5 141</td>
<td></td>
<td></td>
<td>150 75 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>51.5 301.5 175</td>
<td></td>
<td></td>
<td>183 92 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>61.5 361.5 210</td>
<td></td>
<td></td>
<td>220 110 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 5 - Indirect units - Technical specifications

<table>
<thead>
<tr>
<th>SIZE</th>
<th>UNITWEIGHT (kg) EMPTY</th>
<th>FULL</th>
<th>AUXILIARY VOLUME (L)</th>
<th>AUXILIARY COIL SPECIFICATIONS SURFACE (sq.m)</th>
<th>HEAT UP (mins)</th>
<th>RECOVERY (mins)</th>
<th>RATING (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>45.5 235.5 127</td>
<td></td>
<td></td>
<td>0.61 19 14.5 18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>47.5 257.5 147</td>
<td></td>
<td></td>
<td>0.68 24 18.5 18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>56.5 306.5 175</td>
<td></td>
<td></td>
<td>0.73 26 20 18.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>66.5 366.5 210</td>
<td></td>
<td></td>
<td>0.79 25 19 24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**

Coil heating performance based on a primary flow rate of 15 l/min at 80° C.
Temperature rise is from 15° C to 60° C.
Heating times using the solar primary circuit will depend on the amount of solar radiation, sunshine hours, collector panel type, size and orientation so will be variable.
OUTLINE SPECIFICATIONS

Maximum mains water supply pressure (to Cold Water Combination Valve) 1.6 MPa (16 bar)

Operating pressure (Pressure reducing valve set pressure - non adjustable) 0.3 MPa (3 bar)

Expansion relief valve set pressure 0.8 MPa (8 bar)

Temperature/Pressure relief valve set temp/pressure 90°C/ 1 MPa (10 bar)

Immersion heater rating (a.c. supply only) 3.0kW 240V
2.7kW 230V

Outer casing:
White textured plastic coated corrosion proofed steel

Water container:
Duplex stainless steel (grade 1.4362 to EN10088). 100% pressure tested to 1.5 MPa (15 bar).

Thermal insulation:
CFC/HCFC free fire retardant expanded polyurethane foam with zero ozone depletion potential. It has a Global Warming Potential (GWP) of 3.1. Nominal thickness 50mm.

Pipe connections:
All connections accept 22mm outside diameter pipe - compression nuts and olives supplied. Thread rate is 3/4” BSP male parallel to accept standard 3/4”BSP female fittings if required.

Safety features:
Direct units -
Manually resettable thermal cut-out on each heating element
Factory fitted Temperature/Pressure relief valve

Indirect units -
Manually resettable thermal cut-out on heating element
Manually resettable thermal cut-out for primary heating. Must be wired in conjunction with 2-port motorised valve supplied.
Factory fitted Temperature/Pressure relief valve
Guarantee

12.1 WARNING
Should the factory fitted Temperature and Pressure Relief Valve be tampered with or removed your guarantee will be invalidated. Neither the Distributor or Manufacturer shall be responsible for any consequential damage howsoever caused.

12.2 GUARANTEE TERMS
Heatrae Sadia guarantee the electrical parts, thermal controls and valves for a period of two years, excluding the cold water control valve which is guaranteed for a period of five years, from the date of purchase, with the exception of damage due to scaling.

The Expansion Vessel is guaranteed for a period of five years.

The stainless steel vessel is guaranteed for a period of twenty-five years against faulty manufacture or materials provided that:

i) It has been installed by a competent installer and as per the instructions contained in this manual and all relevant Codes of Practice and Regulations in force at the time of installation.

ii) Any disinfection has been carried out in accordance with BS 6700.

iii) It has not been modified in any way other than by Heatrae Sadia Heating.

iv) It has only been used for the storage of wholesome water.

v) It has not been installed in a location liable to be subjected to frost, nor has it been tampered with or been subjected to misuse or neglect.

vi) No factory fitted parts have been removed for unauthorised repair or replacement.

vii) Within 60 days of purchase the user completes and returns the certificate supplied to register the product.

Evidence of purchase and date of supply must be submitted.

This guarantee is not valid for installations outside the United Kingdom and the Republic of Ireland. For installations outside these territories please contact either the Heatrae Sadia Heating Export Department (Tel: +44 1603 420191) or Baxi International (Tel: + 44 1926 478323) for further details of the guarantee terms and conditions applicable.

This guarantee does not affect your statutory rights.

ENVIRONMENTAL INFORMATION
This product is made from many recyclable materials, therefore at the end of its useful life it should be disposed of at a Local Authority Recycling Centre in order to realise the full environmental benefits.

Insulation is by means of an approved HCFC/CFC free polyurethane foam.

The pace of product development is such that we reserve the right to change product specifications without notice. We do, however, strive to ensure that all information in this leaflet is accurate at the time of publication.
Contacts

CUSTOMER SERVICE
Tel: 0844 8711535
Fax: 0844 8711528
E-mail: heatraesadiaservice@heateam.co.uk

ADDRESS
Heatrae Sadia Heating
Hurricane Way
Norwich
Norfolk
NR6 6EA

SWITCHBOARD
Tel: 01603 420100

SPARES STOCKISTS

Electric Water Heating Co.
2 Horsecroft Place, Pinnacles,
Harlow, Essex
CM19 5BT
Tel: 0845 0553811
E-mail: sales@ewh.co.uk

SPD
Special Products Division,
Units 9 & 10 Hexagon Business Centre,
Springfield Road, Hayes, Middlesex
UB4 0TY
Tel: 020 8573 0574

Parts Center
Network 65 Business Park
Bentley Wood Way
Burnley, Lancashire
BB11 5ST
Tel: 01282 834403
www.partscenner.co.uk

Newey & Eyre
Specialist Products Division
Please contact your local branch

UK Spares Ltd.
Tower Lane, Warmley
Bristol
BS30 8XT
Tel: 0117 961 6670

William Wilson Ltd.
Unit 3A, 780 South Street,
Whiteinch, Glasgow
G14 0SY
Tel: 0141 434 1530